您的位置: 首页 / 观点 / 四月观察 / 正文

元宿:美国的疫情数据是真实的吗?

2020-04-10 18:10:49 作者: 元宿 评论: 字体大小 T T T
疫情造成的实际伤亡人数只有在疫情结束后,并将新的死亡统计数字与前几年的数字进行比较时,才能得知较为准确的数值。但可以明确的是,任何国家如果好好把握好中国给的窗口期做准备,都能将数据趋近稳定真实地呈现。

元宿:美国的疫情数据是真实的吗?

6、  元宿外科学硕士

【文/元宿】

“美国的疫情数据是真实的吗?”

先说结论,美国疫情数据的增长趋势较符合实际,但是具体数据(确诊量和死亡量)必定比现有的更多。

这情况不只在美国存在,包括意大利、西班牙等医疗系统在疫情中过载的国家,数据模型都与实际存在差距。

大多数西方国家增长轨迹相似,但不同国家和地区在具体数量上还是有很大差别。(图/FT)

所谓的“真实数据”,主要受三方面影响。

1.检测量

检测量既影响了确诊量,也影响了病死率。

检测量这一点,美国一开始就不好,甚至可以说恰恰是因为一开始的检测量没跟上,才白白错过了一个多月的窗口期。

2月初,世界卫生组织(WHO)推荐德国设计的测试模型被美国疾控中心(CDC)拒绝,它觉得WHO提供的测试精度不高,于是想自己做测试,结果失败了。美国的检测开始得太晚,后来又太少,以至于无法控制这种新出现的流行病规模。

直到二月底华盛顿州出现美国首例新冠死亡案例,美国食品药品监督管理局(FDA)才公告指南,私营实验室可以自行开发检测试剂,而同一时期证实病例的韩国早已经开始。

CNN获得的内部资料显示,直到3月25日共32万个订单,依然有一半——也就是16万——检测订单积压。最近几天逐渐减少,目前每天测试3万例,平均所需时常是4-5天。加上还会受到运输时间的影响(都需要医院送检)。

庞大的检测量和跟不上的检测速度,导致大量患者还没在医院确诊就死于社区中。

检测量影响确诊量我们很好理解,那么检测量如何影响病死率呢?

前面我们说的是确诊上的差异,现在我们要说死亡人数上的差异。

你可能这段时间经常看到一个术语:“病死率”(case fatality rate, CFR)。这是死亡人数除以确诊病例数后的结果,当媒体们谈论“死亡率”时,他们通常指的就是这个数字。假设一个国家有1万确诊病例和100例死亡,那么该国的粗病死率为100/10000,即1%。

这不是我们想要的,甚至可能与我们想要的相差甚远。我们想要的是“感染致死率”(infection fatality rate, IFR),这是死亡人数除以实际患病人数。

对这种疾病检测呈阳性的人数可能只是患病总人数的一小部分,因为只有一小部分人口真正接受了检测。

很明显,IFR很难准确地确定。唯一接受测试的人将是病情最严重的人,而你的分母受检测量限制,实际上可能要比你现在的分母大得多,所以你的IFR可能比CFR低得多。

以韩国为例,检测能力强的国家分母数值更接近于现实中的总感染数,而医疗系统被击穿的国家——以意大利为例——它的粗病死率在媒体上被放得很大,就是因为分子太大而分母小。

所以,病例数与感染数不同,如果一个国家对每个人都进行了检测,发现了所有的病例,那么它的IFR和CFR会尽量趋于一致,也就是刚刚假设的1%,但如果它只发现了10%的患者,那么你的1万例确诊病例只是10万人的冰山一角。

包括目前英国的统计数据也是不准的,它只是简单地统计那些检测结果为阳性、随后死亡的人,但在其他一些国家,即使没有进行检测(“疑似”而非“确诊”),如果有症状,也会被记录为死于Covid-19;而另一些国家,医院外的人没有接受检测,因此也没有记录。

检测条件十分有限的国家,无法检测轻症患者,目前的确诊案例会远低于人群中的总感染数。

2.医疗系统的承载力(体现在ICU床位等)

要达到对患者“应收尽收”的原则,很大程度上取决当地的床位等医疗资源,如果新闻报道床位已经出现供不应求,那么必定会出现“医疗挤兑”。

“医疗挤兑”造成的结果是当医院人满为患,病人就会被要求呆在家里,直到出现最严重的症状,许多人会死在自己的家中或养老院,除非尸检,否则可能不会计入统计。

以下图为例,图中的虚线代表医疗系统的承载力(最大负荷量)。在这条线以上,治疗冠状病毒患者和患有其他疾病的人都变得更具挑战性。

医疗卫生系统的承载能力是有限的,医院的承载能力和医务人员的数量、床位数以及医疗设备数等有关,若突破医疗承载力(虚线以上),则出现病例数暴发式增加,流行曲线快速攀到顶峰。超过了医疗系统承受能力,就意味着有一部分病人无法得到有效治疗。

德国就属于医疗系统还未被击穿,患者数还未突破最大负荷内的。尽管德国也很危险,但是它始终在努力压平曲线,预防和延缓病毒的传播,这样大部分人不会同时生病,给医疗机构减轻救治压力。

不论是意大利还是现在的美国,都有这个情况,当然,意大利是因为后期医疗系统被击穿所导致,而美国还有来自一开始的检测速度。

3.上报程序(是否实时/标准)

虽然上报程序并不影响最终数值,但是会影响流行曲线的变化趋势,让人们低估风险,美国初期和现在的英国都是如此。

以英国数据为例,英国每天都有一个很大的死亡数字。每个人都会跳到这个数字上,把它当成最新的死亡人数。然而,NHS的数据报告的目前占英国死亡人数的大部分实际上反映的是报告时的数量,而不是当日实际的数量。这个数据通常是在前几天就出现,有时甚至几周前。我们不知道前一天有多少人死亡,事实上,总体数字可能会少报前一天实际发生的死亡人数。

我们所听到的数字通常是计算在较早日期发生的死亡人数。这种差异会导致流行曲线变化比实际更慢,让人们低估风险,然而有时候可能放松一天发布隔离措施,就是几千条人命。

以英国延误报告为例,在截至3月31日的6天中,Covid-19的实际死亡人数高于报告的死亡人数。

如何校准真实的数据?

一种方法是,不再用具体的数值,而是给定一个值域范围(最大最小值),这在制作预测模型时常见。

在一个非常简单的模型中,通过将一个单一的数字,即IFR,改变为几个值域中的一个参考,而且也不会预测太长时间以后的范围,通常每天都在动态变化,如牛津大学贾森·奥克(Jason Oke)教授提出的CEBM就是这样。

另一种可靠的方法是和过去的正常年份死亡人数作比较,寻找“超额死亡量”——即与“正常”年份相比,死亡总人数增加了多少。

比如说,在检疫解除后送到意大利殡仪馆的骨灰盒数量,也要考虑到经常死亡的人数。不能到时候从照片上看数千只骨灰盒被送到大型殡仪馆,就说明它比实际更高,这样你只考虑到了分子,没考虑到分母。

由于死亡本身可以在不同的地方以非常不同的方式记录,目前所有的COVID-19相关统计数字,都与各个国家不同的检测能力、检测政策、医疗水平、人口结构等息息相关。

在大流行结束前,数据都不可能做到百分百精准。比如2009年的猪流感疫情,人们在疫情仍在继续时使用的数字,与科学家们后来确定的数字大相径庭:2009年的早期估计在0.1%到5.1%之间,世卫组织的最终估计仅为0.02%,与季节性流感相似。

疫情造成的实际伤亡人数只有在疫情结束后,并将新的死亡统计数字与前几年的数字进行比较时,才能得知较为准确的数值。

但可以明确的是,任何国家如果好好把握好中国给的窗口期做准备,都能将数据趋近稳定真实地呈现。

(本文为元宿在知乎问题“美国的疫情数据是真实的吗?”下的回答。)

责任编辑:东方
来源: 观察者网
相关推荐:
看完这篇文章有何感觉?已经有0人表态